Lecture 13 Reactions of Benzene

March 5, 2019

Electrophilic Aromatic Substitution

<u>Please</u> be sure that you can do this and that it makes sense to you!!

All EAS reactions follow this path so we only need to learn how to make different electrophiles, E⁺

Electrophilic aromatic substitutions include:

Nitration Sulfonation Halogenation Friedel-Crafts Alkylation Friedel-Crafts Acylation

Relative rates of Nitration

Effects of substitution on further electrophilic aromatic substitution

	Strongly activating Moderately	—ŇH ₂ 0 —ŇHCR	−ŇHR O ⊫ −ŇHCAr	−ŸR ₂ −ÖR	−ÖH O I −ÖCR	0 −ÖCAr		3	Real Fast Pretty fast
o-Para	Weakly activating	-R	\neg						Kinda slow
Orth Direc	Weakly deactivating	- <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>C</u> l:	- <u></u> Br:	- <u>Ï</u> :				Pretty slow
a ecting	Moderately deactivating	0 I -CH	0 -CR	0 -COH	0 I -COR	O I -CNH ₂	0 -SOH	−C≡N	Slow
Met	Strongly deactivating	-NO ₂	$-NH_3^+$	-CF3	-CCl ₃		U		Real Slow

Adding a Second Substitent

Methoxy is is therefore an "o-p director"

Adding a Second Substituent

Nitro is therefore a "meta director"

regioselectivity is controlled by the most activating substituent

The "Best Man Wins"

Reduction of the Nitro Group

Aniline !

The Nitro group is easily reduced. Many reducing agents can be employed for this transformation including Sn or Fe in HCl, H_2 with Pd/C, etc

Aniline dyes (Tyrian Purple)

Royal Purple Previously from shell fish secretions

Diazonium Salts

Mechanism of Diazonium Salt formation

Reactions of Diazonium Salts

Diazonium Salts

 The -N₂⁺ group of an arenediazonium salt can be replaced in a regioselective manner by these groups

Practice...work backwards Oh No....two o,p directors meta to one another???

Synthesis Strategy

Substitution Reactions

 Aryl halides do <u>not</u> undergo nucleophilic substitution by either S_N1 or S_N2 pathways!

But....this is fact

• When heated under pressure with aqueous NaOH, chlorobenzene is converted to sodium phenoxide

– neutralization with HCl gives phenol????? What is this??

Also fact....

 The same reaction with 2-chlorotoluene gives a mixture of ortho- and meta-cresol???? Ortho and meta....huh????

Also true

• The same type of reaction can be brought about by the use of sodium amide in liquid ammonia

Proposed Benzyne Intermediate

 β-elimination of HX gives a "<u>benzyne</u>" intermediate, that then adds the nucleophile to give products

Proposed Benzyne Intermediate

Proposed Benzyne Intermediate

Another Mystery??

More than 95% of the product is the meta isomer??

Nucleophilic Addition-Elimination

 When an aryl halide contains strongly electronwithdrawing -NO₂ groups ortho and/or para to X, nucleophilic aromatic sub. takes place readily

Meisenheimer Complex

A Meisenheimer complex

Addition Elimination

